C编程实现:应用正多边形逼近法求π的近似值
正多边形逼近法求π的近似值,其核心思想基于极限理论。设想一个直径为1的圆,若能求出其周长C,则π值可通过π=C/d得出。因此,关键在于准确计算圆的周长C。 此方法,即正多边形逼近,在古代中国已被数学家们采用,用以近似求解圆的周长,当时称为“割圆术”。其精髓在于:圆的内接正多边形边数增加时,其边长更趋近于圆的周长。如下图所示,内接正六边形的周长比内接正四边形的周长更接近外接圆的周长。
爱因斯坦阶梯问题的C语言实现
爱因斯坦曾出过这样一道有趣的数学题:有一个长阶梯,若每步上 2 阶,最后剩 1 阶;若每步上 3 阶,最后剩 2 阶;若每步上 5 阶,最后剩 4 阶;若每步上 6 阶,最后剩 5 阶; 只有每步上 7 阶,最后刚好一阶也不剩。请问该阶梯至少有多少阶。 爱因斯坦的阶梯问题是一个经典的数学问题,它涉及到寻找一个满足特定条件的最小正整数。这个条件是关于阶梯的总阶数与不同步长下剩余的阶梯数之间的关系。
C语言实现狄克斯特拉算法
想象一下你站在一个城市的某个地方(起点),想要去城市的其他所有地方(节点),而且你知道每条路(边)的长度(权重)。狄克斯特拉算法就是帮助你找出从你现在站的地方到城市中其他每个地方的最短路径的方法。 狄克斯特拉算法(Dijkstra's algorithm),又称迪杰斯特拉算法,是计算机科学中一种非常重要的算法,它用于在加权图中找到从单一源点到其他所有节点的最短路径。这里的“加权图”指的是图中的每条
数学趣题:舍罕王的失算
数学家达依尔向印度国王舍罕王要求赏赐 舍罕王是古印度的一个国王,他喜欢上了下棋,并且和大臣达依尔下棋时输给了他。达依尔请求国王赏赐他麦子,要求是棋盘的第一个格子放1粒麦子,第二个格子放2粒,第三个格子放4粒,第四个格子放8粒,以此类推,每个格子放的麦子是前一个格子的两倍,直到放满整个64格的棋盘。国王觉得要求很简单,就答应了。但是,当真正开始计算所需的麦子数量时,国王才发现这是一个天文数字,他无法
回溯法与经典八皇后问题
回溯法,其实就是一个“试错”的过程。就像你在解一个复杂的拼图或者迷宫游戏,你会尝试不同的路径,如果发现当前路径走不通,或者不符合条件,你就会退回到上一个分叉点,然后选择另一条路继续尝试。 在编程中,回溯法常用于解决组合问题、搜索问题、决策问题等。它的核心思想是: 定义问题的解空间:这就像是把迷宫的所有可能路径都列出来。 选择搜索策略:决定先尝试哪条路径。比如,你可以从起点开始,每次选择一条没走过的
- 1
- 2